Simulation 3D d'écoulements pour les PME

Sous-traiter ou investir?

Quid des solutions open source ?

Alexis Lapouille, président Yann Recoquillon, ingénieur d'études et formateur

Introduction

Objectifs du webinaire

- Simulation numérique d'écoulements
 - Description / Fonctionnement
 - Méthodes de résolutions
 - Que peut-on en attendre?
 - Dans quel contexte l'utiliser ?
- Logiciels de simulation
 - Quels outils sur le marché?
 - Comment choisir l'outil le mieux adapté à mes besoins
- Internaliser ou externaliser
 - Critères de choix
 - Coûts : ordre de grandeur

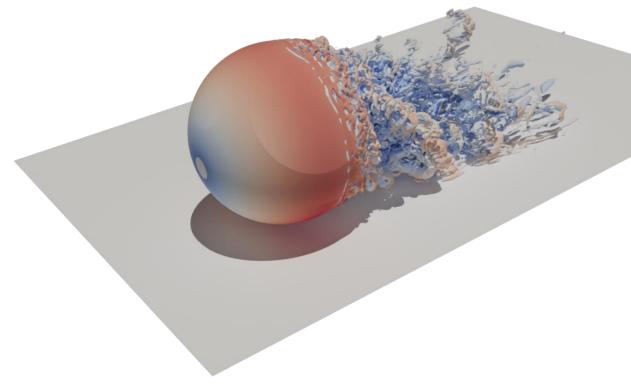
Introduction

Intervenants

Alexis LAPOUILLE

- Créateur et dirigeant d'Aero Concept Engineering depuis 2002
- Parcours:
 - Ingénieur ESTACA
 - Ingénieur d'études chez Fluent Benelux
 - Responsable simulation aérodynamique chez Prost Grand Prix

Yann RECOQUILLON


- Ingénieur d'études CFD et formateur chez Aero Concept Engineering depuis 2016
- Parcours :
 - Ingénieur en Mécanique et Energétique
 - Docteur en mécanique des fluides
 - Doctorant chez Renault

Webinaire: Simulation 3D d'écoulements pour les PME

Ingénieur de recherche chez SATT Sud-Est

- Présentation
- Caractéristiques soufflerie
- Simulation numérique d'écoulements

Présentation

• Création: 2002

• Equipe : 8 Salariés (Ingénieurs ou Docteurs)

• La soufflerie de Magny-Cours (Anciennement Ligier et Prost Grand Prix)

• Services:

Simulation

- Etudes CFD sous OpenFOAM
- Formations OpenFOAM
- Logiciel ACE of Aircraft

Conception

- CAO sous CATIA V5
 - Maquettes
 - Outillage de mesure
 - Conception surfacique

Mesures expérimentales

- Soufflerie
- Fabrication/Instrumentation maquettes de soufflerie

Caractéristiques soufflerie

• Section d'essais : 2.2 x 2.2m

• Vitesse maximale : 40m/s (144km/h)

Sol fixe ou défilant (tapis roulant)

• Essais Aéronautique

Essais sur avion complet

- Effet de sol ou sol fixe
- 6 composantes
- Incidence motorisée
- Lacet manuel

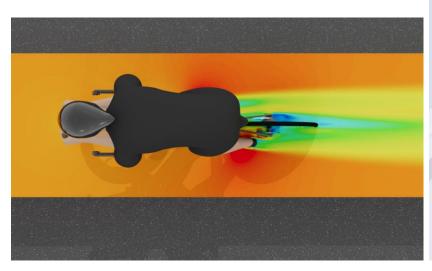
Essais sur demi-avion

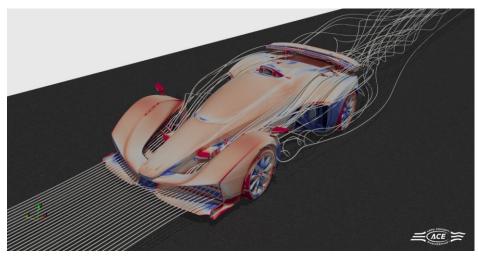
- Plateau tournant +30 à -30°
- Jusqu'à 1,5m de demi envergure
- Fx, Fz, My, poussée et couple moteur

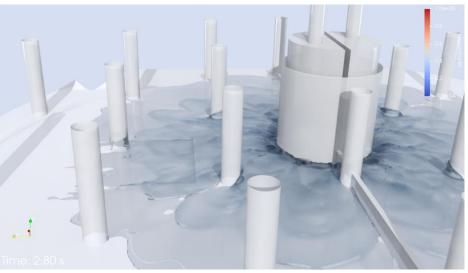
Essais Automobile

- Echelle maquette : jusqu'à 40%
- Mesure 6 composantes
- Sol fixe ou défilant
- Mouvements maquette
 - Tangage et roulis motorisés (contrôle par laser)
 - Lacet +/- 6°
 - Braquage jusqu'à 7°
- Roues attachées à la maquette ou à des bras de roue pour une mesure de traînée indépendante

Simulation numérique d'écoulements (CFD)

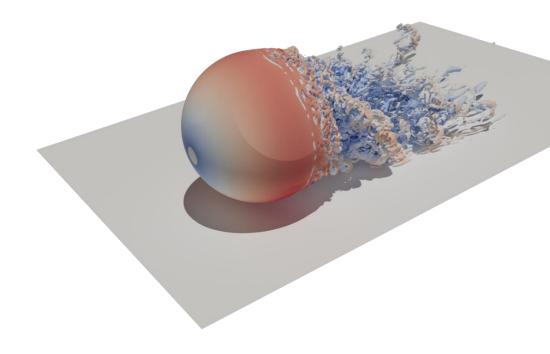

- Equipe : 4 ingénieurs
- Moyens internes : 200 cœurs et 2To de RAM
- Code de calcul : OpenFOAM (open source)


Formations à OpenFOAM


- Intra-entreprise
- Formations personnalisées

Grande variété de secteurs :

- Aéronautique
- Automobile
- Défense
- Process industriels
- Sport



- Présentation / historique
- Méthodes de résolution
- Zoom sur les méthodes Navier-Stokes
- Qu'attendre d'une simulation ?
- Dans quel contexte utiliser la simulation?
- Précision et sources d'erreurs
- Essai ou simulation ?
- Quelques ordres de grandeur

Généralités

- Mécanique des Fluides Numérique (MFN), plus connue dans sa version anglaise : Computational Fluid Dynamics (CFD)
- Principe : résoudre numériquement des équations décrivant le comportement des fluides

Repères historiques

- Années 40-50 : première simulations utilisant des méthodes type différences finies sur des domaines discrétisés
- **Début des années 80** : apparition des premiers codes de calcul commerciaux (PHOENICS, Fluent)
- Depuis les années 80 : multiplication des codes de calcul. L'augmentation des puissances de calcul et la diminution du coût du matériel permettent de complexifier les méthodes et modèles

Déploiement dans l'industrie

- Années 70-80 : Aéronautique (profils d'ailes, moteurs, avions complets)
- Années 80-90 : Automobile (de formes très simplifiées à des géométries plus réalistes)
- Années 90 : Energie (centrales électriques, oil & gas)
- Développement dans la chimie, les process industriels, le bâtiment et l'urbanisme
- Développement des simulations multiphysiques : transfert thermique conjugué, interactions fluide-structure, ...
- Développement de l'optimisation de formes, intelligence artificielle, ...

- Méthodes de résolutions
 - Quelques exemples, non-exhaustif

VLM

Vortex Lattice Method

- Années 40
- Ecoulement potentiel
- Non-visqueux
- Irrotationnel
- Stationnaire
- Utilisé en aéronautique

Méthode des panneaux

- Années 60
- Ecoulement potentiel
- Incompressible
- Non-visqueux
- Stationnaire
- Aérodynamique
- Hydrodynamique

Navier-Stokes

- Années 60-70
- Utilisé dans l'industrie à partir des années 80
- Turbulence
- Transfert thermique
- Multiphase
- Newtonien/Non-Newtonien

SPH

Smoothed Particles Hydrodynamics

- Fin des années 70
- Initialement développé pour l'astrophysique
- Sans maillage
- Approche lagrangienne
- Bien adapté pour des écoulements à surface libre

LBM

Lattice Boltzmann Method

- Fin des années 80
- Performance sur calcul parallèle
- Aérodynamique
- Aéro-acoustique
- Multi-phase

Auteur: Yann Recoguillon

Micro fluidique

Méthodes de résolutions

- Chaque méthode à ses avantages et inconvénients : temps de calcul, précision, type de physique, ...
- Les codes CFD les plus utilisés sont basés sur la résolution des équations de Navier-Stokes via la méthode des volumes finis
- Les méthodes peuvent être complémentaires

VLM

Vortex Lattice Method

Méthode des panneaux

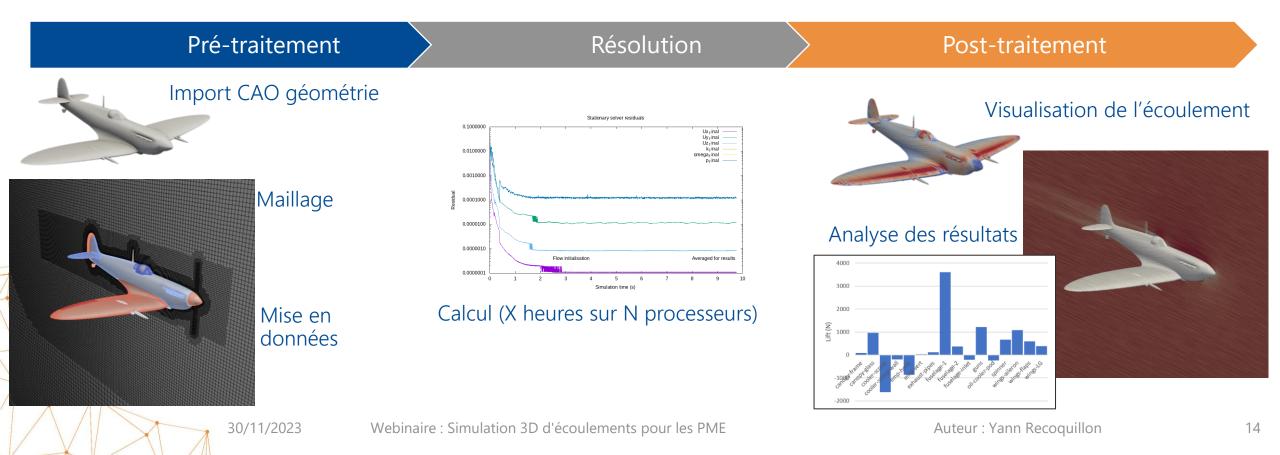
Navier-Stokes

SPH

Smoothed Particles Hydrodynamics

LBM

Lattice Boltzmann Method


Méthodes simplifiées : intéressantes pour du prédimensionnement ou une estimation rapide des performances aérodynamiques

Méthodes plus lourdes en temps de calcul : permet de simuler plus de phénomènes physiques, de manière plus détaillée / précise. Le choix d'une méthode va dépendre de l'application visée

Zoom sur les méthodes Navier-Stokes

- Approche la plus répandue dans l'industrie
- Méthode des volumes finis, multiples modèles et méthodes de résolutions

Zoom sur les méthodes Navier-Stokes

Navier-Stokes

complexité

DNS 1

Direct Numerical Simulation

• LES

Large Eddy Simulation

• DES

Detached Eddy Simulation

• RANS²

Reynolds-Averaged Navier-Stokes

- Maillage
 - Nombre de cellules
 - Finesse du maillage dans les zones d'intérêts
 - Modélisation/Résolution de la couche limite
- Modèle de turbulence :
 - k-ε standard
 - k-ε realizable
 - k-ε RNG
 - LRR
 - Spalart-Almaras

- k-ω standard
- k-ω SST
- k-ω Langtry-Menter SST
- k-kL-ω

- Schémas numériques
 - 1^{er}/2nd ordre, en espace et en temps
 - Compromis précision / stabilité
- Conditions aux limites
 - Caractéristiques de l'écoulement (vitesse/débit, pression, température, taux de turbulence, ...)

Auteur: Yann Recoguillon

• Choix de conditions adaptées à la physique de l'écoulement

¹ Recherche uniquement

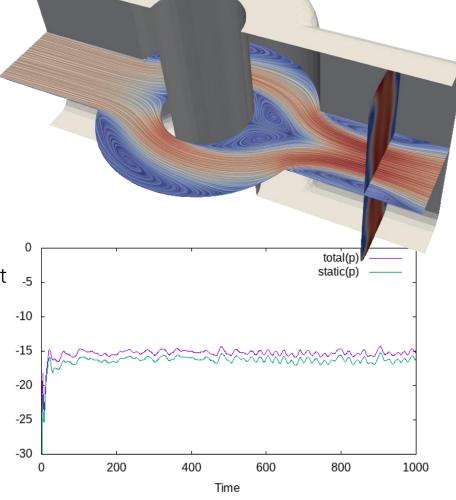
² Standard dans l'industrie

Zoom sur les méthodes Navier-Stokes

- Multiples paramètres à définir pour mettre en données un cas
- Chaque choix implique des conséquences sur les autres paramètres
- Nécessité d'avoir un certain niveau d'expertise
- Le résultat dépend de l'utilisateur

Qu'attendre d'une simulation ?

Grandeurs calculées


• Pression, vitesse, (turbulence, température, masse volumique, fractions volumiques, concentrations...)

• Données chiffrées :

- Efforts, pertes de charge (delta P), débits, flux de chaleur, cisaillement à la paroi, ...
- Possibilité d'accéder à toutes les variables calculées en tout point du domaine de calcul (point, surface, section, volume...)

• Visualisation :

- Possibilité de visualiser l'écoulement en 3D
- Permet de faire le lien entre les données chiffrées et les phénomènes visibles dans l'écoulement (décollements, tourbillons, zones mortes,)

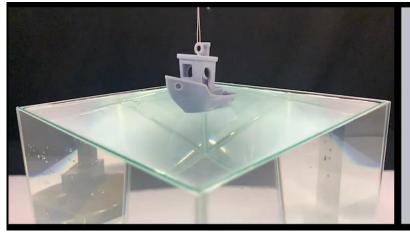
Dans quel contexte utiliser la simulation ?

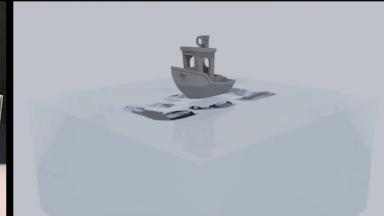
- Innovation:
 - Explorer de nouvelles idées / concepts
 - Développer son expertise et sa maîtrise des phénomènes mis en jeu
- Développement produit :
 - Explorer des designs différents
 - Analyser le comportement de l'écoulement et identifier des pistes d'amélioration
 - Faire une première validation du design plus tôt dans le projet, avant d'être en mesure de fabriquer les premiers prototypes
- Dimensionnement
 - Le design produit est connu mais le dimensionnement dépend de l'application du client → la simulation peut permettre de valider le dimensionnement et de s'assurer qu'il respecte le cahier des charges client avant de lancer la fabrication
- Gestion de crise
 - Apporter d'autres éléments de compréhension à un problème existant

30/11/2023

Précision et sources d'erreurs

- L'erreur totale résulte du cumul de petites erreurs à plusieurs niveaux
 - Erreurs de **géométrie** → la géométrie simulée est toujours simplifiée (perçages, jeux, soudures, tolérances...)
 - Erreurs de modèle mathématique → jeu d'hypothèses (stationnaire, turbulence, rugosité parois, ...)
 - Erreurs de conditions aux limites → simplification de la réalité
 - Erreurs de discrétisation → lié à la finesse du maillage et aux schémas numériques utilisés
 - Erreurs numériques → dépend de la précision des nombres à virgule flottante (simple ou double)
 - Erreurs humaines → fréquentes face à la complexité des mises en données
 - Erreurs de **post-traitement** → unités, grandeurs, méthode de calcul
 - Erreurs « autres » → de petits détails peuvent avoir un effet non-négligeable. L'expérience permet de les limiter, mais toujours pas de les éviter


Lubos Pirkl: <u>CFD is not a calculator.</u>



• Précision et sources d'erreurs

- Conditions initiales
- Propriétés physiques
 - Masse
 - Centre de gravité
 - Moment d'inertie
- Setup numérique
- Autres?

Précision et sources d'erreurs

- Comment limiter les erreurs ?
 - Être rigoureux dans la mise en œuvre des simulations
 - Gagner en expérience et connaissances
 - Aller à l'essentiel : plus la simulation est complexe, plus il y a des chances que quelque chose se passe mal
- Une question de compromis
 - La simulation rapide, précise et robuste n'existe pas, il faut définir les critères à prioriser
- Le logiciel peut-il faire les bons choix à ma place ?
 - Le paramétrage donnant le meilleur résultat dépend du cas / de l'application → pas de configuration qui fonctionne à tous les coups
 - Pour une application simple, dont le périmètre est bien défini, il est possible d'avoir une méthodologie robuste avec une précision raisonnable à condition de limiter les possibilités.
 - Tout outil générique implique que l'utilisateur fasse lui-même les choix les plus adaptés à son besoin

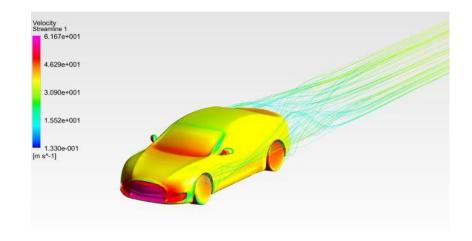
30/11/2023

Webinaire: Simulation 3D d'écoulements pour les PME

Précision et sources d'erreurs

- « Tous les modèles sont faux mais certains sont utiles »
 - Une simulation est un calcul approché de la réalité
 - Plus ou moins de simplifications en fonction des modèles choisis
 - Plus ou moins de simplifications géométriques (par rapport à la CAO mais aussi par rapport à l'objet réel)
 - Moins de simplifications implique une augmentation de la durée et du coût de la simulation
- « Personne ne croit la simulation sauf la personne qui l'a faite. Tout le monde croit la mesure sauf la personne qui l'a faite. »
 - Quelle est la précision géométrique ? Tolérances de fabrication, montage, positionnement, ...
 - Est-ce que mes moyens de mesure sont intrusifs?
 - Est-ce que je quantifie la même grandeur dans mes essais et ma simulation ?
 - Est-ce que ma simulation reproduit les conditions de mesure ?

30/11/2023


Webinaire: Simulation 3D d'écoulements pour les PME

Précision et sources d'erreurs

- Exemples en aérodynamique automobile
 - Véhicule en soufflerie ≠ Véhicule en simulation ≠ Véhicule en circulation réelle

Auteur: Yann Recoguillon

Mesure de pression dans le sillage → impact sur le comportement du sillage (parfois)

• Essai ou simulation?

- Les deux approches sont complémentaires
 - Explorer une plage de fonctionnement (variations vitesse, débit, positions...)
 - → Avantage à la mesure
 - Explorer des configurations géométriques
 - → Avantage à la simulation
 - Temporalité : délais et coûts de mise en œuvre simulation / essais

• Dans l'idéal :

- Avoir une base de données expérimentales
- Reproduire les configurations mesurées en simulation
- Une fois la méthodologie de simulation validée sur des configurations connues, possibilité d'utiliser la simulation pour explorer de nouvelles voies
- La corrélation essais-mesure permet d'avancer à la fois sur la méthodologie de calcul mais aussi sur les protocoles de mesure

30/11/2023

Webinaire: Simulation 3D d'écoulements pour les PME

Quelques ordres de grandeur

Maillage

- Petit : quelques milliers à quelques millions de cellules
- Intermédiaire : quelques dizaines de millions de cellules
- Gros: 100 millions de cellules et plus

• Hardware:

- Petit: CPU 8 cœurs, 32 Go RAM
- Intermédiaire : CPU 32 cœurs, 128 Go RAM
- Gros: CPU 128 cœurs, 512 Go RAM → serveur de calcul ou mise en cluster de machines
- Stockage : selon le calcul, un cas peut aller de quelques Go à plusieurs centaines de Go

CPU

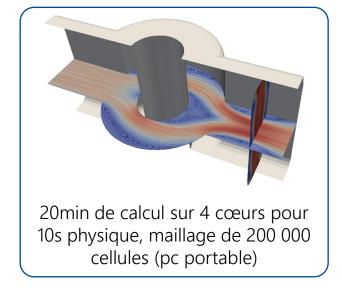
Joue sur le temps de calcul en fonction des fréquences et nombre de cœurs.

L'hyperthreading ne fonctionne pas en CFD, seul le nombre de cœurs physiques compte

Auteur: Yann Recoguillon

RAM

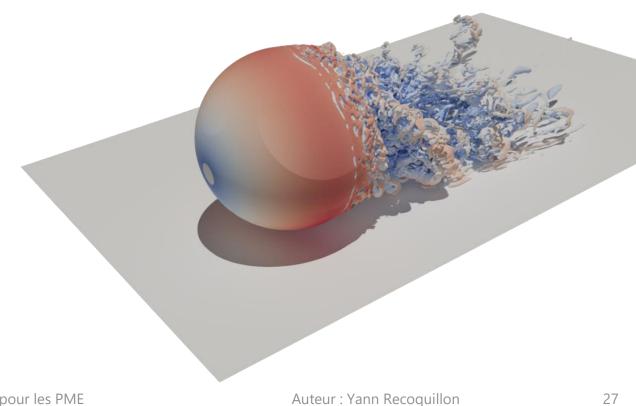
Joue sur la taille maximale admissible pour le maillage.


Compter environ 2Go de RAM pour 1 million de cellules

Quelques ordres de grandeur

Temps de calcul

- De quelques minutes à plusieurs jours, voire semaines en fonction de la taille du maillage, du type de simulation et de la configuration hardware
- Gain en temps de calcul en augmentant le nombre de cœurs, jusqu'à une certaine limite (perte de temps en dessous de 25 000 à 50 000 cellules / cœur)



stationnaire)

- CFD : les leaders du marché
- Choix d'un outil
 - Logiciels propriétaires vs open source
 - Fonctionnalités / utilisation
 - Coût global
 - L'exemple d'ACE

30/11/2023

Webinaire: Simulation 3D d'écoulements pour les PME

CFD : les leaders du marché

SIEMENS

Simcenter Star-CCM+

OpenFOAM Foundation / ESI-OpenCFD

Resolved Analytics: CFD software user survey. https://www.resolvedanalytics.com/cfd-user-survey-results

Autres acteurs

Propriétaires

Open source

Choix d'un outil : logiciels propriétaires vs open source

SIEMENS

Simcenter Star-CCM+

OpenFOAM Foundation / ESI-OpenCFD

Logiciels propriétaires

- Coûts licence : 20 à 50 k€/an/utilisateur, en fonction du type de licence
- Support inclus dans le coût licence
- Logiciel bien documenté
- Interface graphique ergonomique

Logiciels open source

- Coûts licence : 0€
- Pas de support par défaut
- Pas d'interface graphique

Auteur: Yann Recoguillon

Documentation limitée

- Choix d'un outil : fonctionnalités / utilisation
 - Modèles similaires chez les 3 leaders du marché (DNS/LES/RANS, modèles de turbulence, type de physique...)

Logiciels propriétaires

- Mise en données directement dans l'interface
- Choix guidés par l'interface, expérience plus simple pour l'utilisateur
- Peut avoir un effet « boite noire » où il est difficile de comprendre ce qui se passe dans le logiciel

Logiciel open source (OpenFOAM)

- Mise en données dans des fichiers texte
- Grande liberté dans la mise en données, possibilité d'aller très loin dans le paramétrage de la simulation
- Grande flexibilité dans la mise en œuvre (automatisation)
- Cette grande liberté apporte aussi une plus grande complexité qui peut s'avérer déroutante, en particulier pour les débutants

Auteur: Yann Recoguillon

30/11/2023

· Choix d'un outil : intégration dans l'environnement de travail

Logiciels propriétaires

- Tendance à regrouper les outils dans une grosse suite logicielle
- Permet de rendre l'expérience utilisateur plus fluide avec un workflow intégré (pré-traitement, simulation, posttraitement)
- Permet de réaliser d'autres types de simulation si le besoin existe en interne
- Pour une PME, vous payez 100% et utilisez 10% de l'outil
- Plus forte dépendance à l'éditeur du logiciel si l'on utilise exclusivement les outils de la suite

Logiciel open source (OpenFOAM)

- Outils de conversion intégrés pour importer/exporter des données vers d'autres outils
- Laisse le choix des outils à utiliser pour le pré et posttraitement, qu'ils soient commerciaux ou open source
- Possibilité d'utiliser des solutions tierces pour disposer d'une interface graphique (add-ons, solutions gratuites ou payantes)
- Peut nécessiter de prendre en main de nouveaux outils si ceux-ci ne sont pas encore utilisés dans l'entreprise (CAO pour la définition des géométries, outil de visualisation pour le post-traitement)

Auteur: Yann Recoguillon

30/11/2023 Webinaire: Simulation 3D d'écoulements pour les PME

Choix d'un outil : coût global

Logiciels propriétaires

- Implique une dépense annuelle importante pour la location de la licence
- Prise en main plus aisée, facilitée par l'interface graphique, la documentation et le support
- Ne dispense pas d'une bonne connaissance théorique en mécanique des fluides / simulation numérique, ce qui peut demander du temps ou de la formation (coûts supplémentaires)

Logiciel open source (OpenFOAM)

- Pas de coûts licence : pas besoin d'investissement initial pour commencer à utiliser l'outil.
- Possibilité d'utiliser l'outil sur n'importe quelle machine : poste de travail, serveur de calcul interne, cloud, ...
- Mais : investissement plus important en temps pour prendre en main l'outil et monter en compétence
- Coûts additionnels si l'on souhaite se former ou avoir du support de la part des développeurs ou d'entreprises tierces

Auteur: Yann Recoguillon

30/11/2023 Webinaire: Simulation 3D d'écoulements pour les PME

Choix d'un outil, l'exemple chez ACE

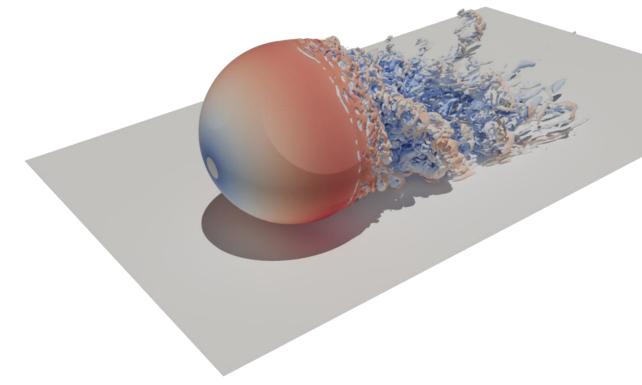
• TPE, spécialistes de la mécanique des fluides

Augmentation rapide des coûts licence Recherche d'un outil alternatif

Coût

- Stagiaire en année de césure
- Formation interne des collaborateurs
- Tests de corrélation Fluent/OpenFOAM

Aujourd'hui


- Maintien des compétences en autoformation
- Investissement dans des ressources de calcul plutôt que des licences

Service

 Formation/support pour accompagner les nouveaux utilisateurs d'OpenFOAM

- Etat des lieux : ressources et besoins
- Choix guidé par le volume d'activité Combien ça coûte
- Un choix intermédiaire : le progiciel

30/11/2023

Webinaire: Simulation 3D d'écoulements pour les PME

• Etat des lieux : ressources et besoins

Compétences

- Ai-je les compétences en interne ?
- Est-il nécessaire de former mes collaborateurs ?
- Est-il nécessaire d'embaucher ?

Hardware

- Ai-je les ressources de calcul en interne ? (poste de travail, serveur de calcul dédié ?)
- Ai-je besoin d'investir dans du matériel ou du service (cloud) ?

Volume d'activité

• Quelles sont mes besoins en CFD ? De quelques jours à quelques mois par an ? Poste à temps complet ?

• Choix guidé par le volume d'activité

- 2 à 10 calculs par an → sous-traiter
 - Difficile de maintenir les compétences en interne
 - Besoin d'une activité régulière pour être efficace
- 2 à 10 calculs par mois → sous-traiter ou internaliser
 - Dépend de l'investissement nécessaire (ressources humaine et matérielles) et de la récurrence (besoin régulier ou ponctuel)
 - Débuter par de la sous-traitance pour évaluer le potentiel, puis internaliser pour optimiser les coûts
 - Une 3^{ème} voie possible : le progiciel
- 2 à 10 calculs par semaines → investir et internaliser
 - Pour des besoins constants et récurrents, mieux vaut investir sur plusieurs années pour développer la compétence en interne (plus économique sur le long terme, maîtrise du savoir-faire en interne)
 - Progiciel

Webinaire: Simulation 3D d'écoulements pour les PME

Combien ça coûte ?

- Externalisation : autour de 4500€/semaine
 - Attention à ce que l'on achète : des résultats bruts ou du conseil ? (analyse/expertise)
- Internalisation : coûts licences (0 à 50k€/an/utilisateur) + investissements éventuels
 - Evaluer l'investissement matériel
 - Evaluer l'investissement humain
 - Embauche ingénieur sénior
 - Embauche ingénieur junior + période de montée en compétence / gain d'expérience
 - Formation interne + période de montée en compétence / gain d'expérience
 - Evaluer besoins en formation et/ou support
- Ordres de grandeur : temps-homme à consacrer à une étude
 - Premier calcul : de 1 journée à 3 semaines selon la complexité
 - Calculs suivants : de 1 heure à 1 journée

• Un choix intermédiaire : le progiciel (ACE)

Principe

- Créer un outil dédié à une application
- Permet de limiter les possibilités et de définir une méthodologie de calcul spécifique

Fonctionnement

- L'utilisateur fournit une géométrie 3D (STL/OBJ) ainsi que les paramètres à simuler (point de fonctionnement, ...)
- L'outil se charge de générer le maillage, faire la simulation et générer les post-traitements
- L'utilisateur récupère les résultats (images, données chiffrées, critères de performance...)

Pour quel usage ?

- Calculs récurrents (dimensionnement ou développement produits)
- Peut permettre de gérer les besoins usuels en complément d'une activité CFD pour la R&D (en interne ou externe)

30/11/2023

• Un choix intermédiaire : le progiciel

Avantages

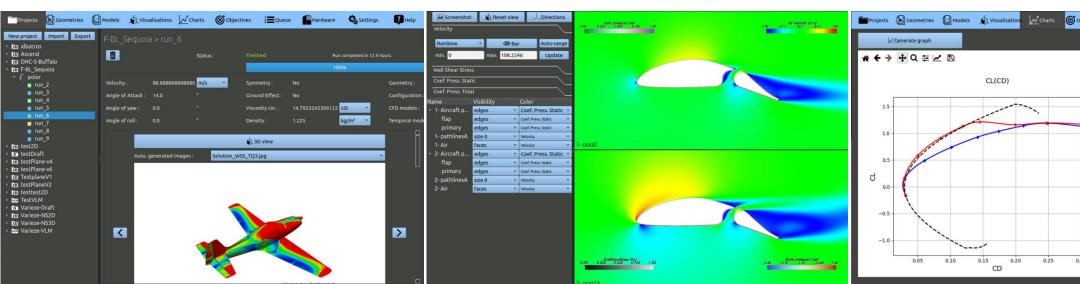
- Utilisation simplifiée ne nécessitant pas de compétences poussées en simulation
- S'adapte au métier (paramètres utilisés, données extraites, vocabulaire utilisé...)
- Automatise les tâches répétitives à faible valeur ajoutée et forte probabilité d'erreur humaine

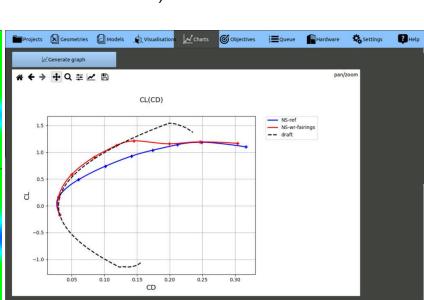
Inconvénients

- Usage limité : pas possible de sortir du cadre pour lequel l'outil à été conçu
- Choix limités : le périmètre d'application doit être défini en amont, tout comme les types résultats attendus
- Moins flexible qu'un logiciel CFD complet

• Quel coûts?

- Dépend de l'application et du niveau d'ergonomie attendu (interface graphique)
- Développement spécifique ou progiciel « sur étagère »
- Développement spécifique : investissement de 10 à 50k€ (vous êtes propriétaires de l'outil)


30/11/2023


Webinaire: Simulation 3D d'écoulements pour les PME

• Un choix intermédiaire : le progiciel

- Exemple : <u>Ace Of Aircraft</u>
 - Outil dédié à l'aviation légère
 - Calcul des caractéristiques aérodynamiques
 - Comprend plusieurs outils, du prédimensionnement au calcul CFD 3D
 - Limité à du vol subsonique sur avion léger (ne permet pas de simuler un Airbus A380!)

Auteur: Yann Recoguillon

Coût : 6 à 8k€/an selon le niveau de licence (pas de nombre limite d'utilisateur ou de cœurs)

• Un choix intermédiaire : le progiciel

- Profil utilisateur <u>Ace Of Aircraft</u>
 - TPE/PME
 - Besoins CFD irréguliers dans le temps
 - Pas de budget pour l'achat d'une suite CFD à 50k€/an
 - Pas de possibilité d'avoir un expert CFD dans l'équipe
 - Cherche à optimiser les ressources (Ace Of Aircraft pour calculs standards, expert CFD pour besoins particuliers)

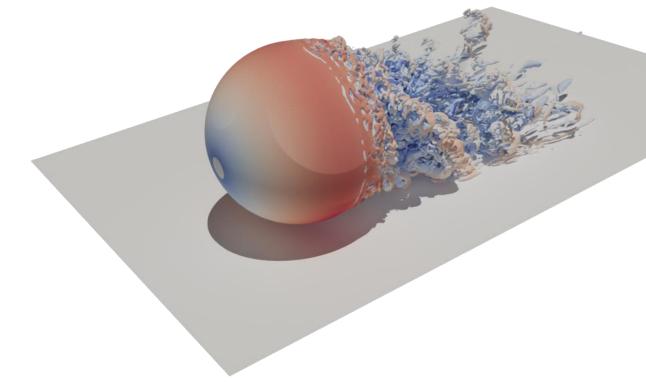
Cas 1

• Simple utilisateur Aircraft, les outils disponibles couvrent tous les besoins

Cas 2

- Utilisation régulière d'Aircraft
- Sous-traitance ponctuelle pour besoins spécifiques

Cas 3


- Sous-traitance
- Internalisation (formation)
- Aircraft pour calculs courants + expert CFD

Pour aller plus loin...

- Questions / Réponses
- Contact

30/11/2023

Webinaire : Simulation 3D d'écoulements pour les PME

Pour aller plus loin...

Questions / Réponses

Etudes CFD / Progiciel / Soufflerie alexis.lapouille@aero-ce.com

> 03 86 58 01 65 www.aero-ce.com

> > Etudes CFD / Formations OpenFOAM yann.recoquillon@aero-ce.com

Technopole, 58470 MAGNY-COURS 03 86 58 01 65

www.aero-ce.com

Président

Alexis LAPOUILLE

<u>alexis.lapouille@aero-ce.com</u>

Responsable formations

Yann RECOQUILLON

yann.recoquillon@aero-ce.com